# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.metadata
import importlib.util
import os
import platform
def _get_package_version(package_name: str, version_fallback: str) -> str:
"""Gets the version of the specified package.
Args:
package_name: The name of the package.
version_fallback: The fallback version string.
Returns:
str: The version of the package, or a fallback string if the package is not
installed.
"""
try:
return importlib.metadata.version(package_name)
except importlib.metadata.PackageNotFoundError:
return version_fallback
def _get_padded_table(
kv: dict, key_title: str, value_title: str, padding: int = 5
) -> str:
"""Formats a key-value pair as a table with padding.
Args:
kv: The key-value pair to format.
key_title: The title for the key column.
value_title: The title for the value column.
padding: The padding to use.
Returns:
str: The formatted table.
"""
max_length = max(len(key) for key in kv.keys())
formatted_kv = []
for key, value in kv.items():
k = "{0:{space}}".format(key, space=max_length + padding)
formatted_kv.append(k + value)
title_row = (
"{0:{space}}".format(key_title, space=max_length + padding) + value_title + "\n"
)
return title_row + "\n".join(formatted_kv)
[docs]
def env():
"""Prints information about the current environment."""
# Delayed imports
from oumi.utils.torch_utils import format_cudnn_version
# End imports
version_fallback = "<not installed>"
env_var_fallback = "<not set>"
# All relevant environment vars.
env_vars = sorted(
[
"ACCELERATE_DYNAMO_BACKEND",
"ACCELERATE_DYNAMO_MODE",
"ACCELERATE_DYNAMO_USE_FULLGRAPH",
"ACCELERATE_DYNAMO_USE_DYNAMIC",
"ACCELERATE_USE_FSDP",
"LOCAL_RANK",
"LOCAL_WORLD_SIZE",
"OUMI_EXTRA_DEPS_FILE",
"RANK",
"WORLD_SIZE",
]
)
# All deps, excluding dev, docs, and gcp.
core_packages = sorted(
[
"accelerate",
"aiohttp",
"bitsandbytes",
"datasets",
"diffusers",
"einops",
"jsonlines",
"llama-cpp-python",
"liger-kernel",
"lm-eval",
"numpy",
"nvidia-ml-py",
"omegaconf",
"open_clip_torch",
"pandas",
"peft",
"pexpect",
"pillow",
"pydantic",
"responses",
"skypilot",
"tensorboard",
"timm",
"torch",
"torchdata",
"torchvision",
"tqdm",
"transformers",
"trl",
"typer",
"vllm",
"wandb",
]
)
package_versions = {
package: _get_package_version(package, version_fallback)
for package in core_packages
}
env_values = {env_var: os.getenv(env_var, env_var_fallback) for env_var in env_vars}
print("----------Oumi environment information:----------\n")
print(f"Oumi version: {_get_package_version('oumi', version_fallback)}")
print(f"Python version: {platform.python_version()}")
print(f"Platform: {platform.platform()}")
print("\nInstalled dependencies:")
print(_get_padded_table(package_versions, "PACKAGE", "VERSION"))
if env_vars:
print("\nEnvironment variables:")
print(_get_padded_table(env_values, "VARIABLE", "VALUE"))
if importlib.util.find_spec("torch") is not None:
torch = importlib.import_module("torch")
print("\nPyTorch information:")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA version: {torch.version.cuda}")
print(
f"cuDNN version: {format_cudnn_version(torch.backends.cudnn.version())}"
)
print(f"Number of GPUs: {torch.cuda.device_count()}")
print(f"GPU type: {torch.cuda.get_device_name()}")
total_memory_gb = float(torch.cuda.mem_get_info()[1]) / float(
1024 * 1024 * 1024
)
print(f"GPU memory: {total_memory_gb:.1f}GB")