Source code for oumi.core.analyze.length_analyzer

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Length analyzer for text content."""

import re
from typing import Any, Optional, Union, cast

from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast

from oumi.core.analyze.dataset_analyzer import (
    ConversationAnalysisResult,
    MessageAnalysisResult,
)
from oumi.core.analyze.sample_analyzer import SampleAnalyzer
from oumi.core.registry import register_sample_analyzer
from oumi.core.types.conversation import Conversation


[docs] @register_sample_analyzer("length") class LengthAnalyzer(SampleAnalyzer): """Analyzer that computes various length metrics for text content.""" def __init__( self, *, char_count: bool = True, word_count: bool = True, sentence_count: bool = True, token_count: bool = False, tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None, include_special_tokens: bool = True, ): """Initialize the length analyzer. Args: char_count: Whether to compute character count word_count: Whether to compute word count sentence_count: Whether to compute sentence count token_count: Whether to compute token count tokenizer: Tokenizer to use for token counting (required if token_count=True) include_special_tokens: Whether to include special tokens in token count. Defaults to True to match training tokenization. Set to False for raw content analysis only. """ self.char_count = char_count self.word_count = word_count self.sentence_count = sentence_count self.token_count = token_count self.tokenizer = tokenizer self.include_special_tokens = include_special_tokens # Validate tokenizer requirements if self.token_count and tokenizer is None: raise ValueError( "tokenizer must be provided when token_count=True. " "Set token_count=False or provide a tokenizer." )
[docs] def analyze_sample( self, conversation: Conversation, tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None, ) -> tuple[list[MessageAnalysisResult], ConversationAnalysisResult]: """Analyze a conversation sample and return comprehensive length metrics. 1. Analyzes each message individually for message-level metrics 2. Computes conversation-level metrics by: - Aggregating message-level char, word, and sentence counts - Using dataset tokenization for conversation-level token count Args: conversation: The conversation object to analyze tokenizer: Optional tokenizer to use for token counting Returns: Tuple containing: - List of MessageAnalysisResult objects for each message - ConversationAnalysisResult for the conversation as a whole """ # Step 1: Compute message-level metrics message_results = self.compute_message_metrics(conversation) # Step 2: Compute conversation-level metrics using message results conversation_result = self.compute_conversation_metrics( conversation, message_results ) # Return individual components return message_results, conversation_result
[docs] def compute_message_metrics( self, conversation: Conversation ) -> list[MessageAnalysisResult]: """Compute message-level length metrics for each message in the conversation. Args: conversation: The conversation object to analyze tokenizer: Optional tokenizer to use for token counting Returns: List of MessageAnalysisResult objects, one for each message """ message_results = [] for msg_idx, message in enumerate(conversation.messages): # Get text content for this message if isinstance(message.content, str): text_content = message.content else: # For multimodal content, extract text only text_content = message.compute_flattened_text_content() # Compute metrics for this message message_metrics = self.compute_length_metrics(text_content) # Create MessageAnalysisResult message_result = MessageAnalysisResult( message_index=msg_idx, role=message.role.value, message_id=message.id or f"msg_{msg_idx}", text_content=text_content, analyzer_metrics=message_metrics, ) message_results.append(message_result) return message_results
[docs] def compute_conversation_metrics( self, conversation: Conversation, message_results: Optional[list[MessageAnalysisResult]] = None, ) -> ConversationAnalysisResult: """Compute conversation-level length metrics for the entire conversation. Args: conversation: The conversation object to analyze tokenizer: Optional tokenizer to use for token counting message_results: Optional pre-computed message results for aggregation Returns: ConversationAnalysisResult containing conversation-level metrics """ # For char, word, and sentence counts, aggregate message-level metrics conversation_metrics = {} # Aggregate message-level metrics for non-token metrics if self.char_count: if message_results is not None: # Use pre-computed message results total_chars = sum( msg.analyzer_metrics.get("char_count", 0) for msg in message_results ) conversation_metrics["char_count"] = total_chars if self.word_count: if message_results is not None: # Use pre-computed message results total_words = sum( msg.analyzer_metrics.get("word_count", 0) for msg in message_results ) conversation_metrics["word_count"] = total_words if self.sentence_count: if message_results is not None: # Use pre-computed message results total_sentences = sum( msg.analyzer_metrics.get("sentence_count", 0) for msg in message_results ) conversation_metrics["sentence_count"] = total_sentences # For token count, tokenize the full rendered conversation using the tokenizer's # chat template for full control (independent of dataset internals). if self.token_count: tokenizer_to_use = self.tokenizer if tokenizer_to_use is not None: # First render the conversation to a prompt string via chat template prompt_text = tokenizer_to_use.apply_chat_template( conversation, # type: ignore tokenize=False, add_generation_prompt=False, ) prompt_text = cast(str, prompt_text) # Then encode with explicit controls conv_tokens = tokenizer_to_use.encode( prompt_text, add_special_tokens=self.include_special_tokens, ) conversation_metrics["token_count"] = len(conv_tokens) # Create ConversationAnalysisResult return ConversationAnalysisResult( analyzer_metrics=conversation_metrics, )
[docs] def compute_length_metrics(self, text_content: str) -> dict[str, Any]: """Compute length metrics for a single text content. This is a helper function that can be used by both message-level and conversation-level analysis. Args: text_content: The text content to analyze tokenizer: Optional tokenizer to use for token counting Returns: Dictionary containing requested length metrics """ metrics = {} if self.char_count: metrics["char_count"] = len(text_content) if self.word_count: # Simple word count - split on whitespace metrics["word_count"] = len(text_content.split()) if self.sentence_count: # Simple sentence count - split on common sentence endings sentences = re.split(r"[.!?]+", text_content) # Filter out empty strings sentences = [s.strip() for s in sentences if s.strip()] metrics["sentence_count"] = len(sentences) if self.token_count: # Use instance tokenizer only tokenizer_to_use = self.tokenizer if tokenizer_to_use is not None: # Use tokenizer for accurate token count tokens = tokenizer_to_use.encode( text_content, add_special_tokens=self.include_special_tokens ) metrics["token_count"] = len(tokens) return metrics