Source code for oumi.core.callbacks.profiler_step_callback

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Calls `profiler.step()`  at the end of each training step."""

import sys
from typing import Optional, Union

import torch
import transformers

from oumi.core.callbacks.base_trainer_callback import BaseTrainerCallback
from oumi.core.configs import TrainingParams


[docs] class ProfilerStepCallback(BaseTrainerCallback): """Trainer callback to notify PyTorch profiler about training steps completion. Also, adds microstep function labels using `torch.profiler.record_function()`. """ def __init__(self, profiler): """Initialize the ProfilerStepCallback. Args: profiler: PyTorch profiler object. """ self._profiler = profiler self._microstep_function = None
[docs] def on_step_begin( self, args: Union[transformers.TrainingArguments, TrainingParams], state: Optional[transformers.TrainerState] = None, control: Optional[transformers.TrainerControl] = None, **kwargs, ): """Event called at the beginning of a training step. If using gradient accumulation, one training step might take several inputs. """ self._complete_previous_microstep_if_needed() self._start_microstep()
[docs] def on_substep_end( self, args: Union[transformers.TrainingArguments, TrainingParams], state: Optional[transformers.TrainerState] = None, control: Optional[transformers.TrainerControl] = None, **kwargs, ): """Event called at the end of an substep during gradient accumulation.""" self._complete_previous_microstep_if_needed() self._start_microstep()
[docs] def on_step_end( self, args: Union[transformers.TrainingArguments, TrainingParams], state: Optional[transformers.TrainerState] = None, control: Optional[transformers.TrainerControl] = None, **kwargs, ): """Event called at the end of each train step. Note that this will be called after all gradient accumulation substeps. """ self._complete_previous_microstep_if_needed() self._profiler.step()
def _complete_previous_microstep_if_needed(self): if self._microstep_function is None: return self._microstep_function.__exit__(*sys.exc_info()) self._microstep_function = None def _start_microstep(self): self._microstep_function = torch.profiler.record_function("microstep") self._microstep_function.__enter__()