Source code for oumi.core.callbacks.profiler_step_callback
# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calls `profiler.step()` at the end of each training step."""
import sys
from typing import Optional, Union
import torch
import transformers
from oumi.core.callbacks.base_trainer_callback import BaseTrainerCallback
from oumi.core.configs import TrainingParams
[docs]
class ProfilerStepCallback(BaseTrainerCallback):
"""Trainer callback to notify PyTorch profiler about training steps completion.
Also, adds microstep function labels using `torch.profiler.record_function()`.
"""
def __init__(self, profiler):
"""Initialize the ProfilerStepCallback.
Args:
profiler: PyTorch profiler object.
"""
self._profiler = profiler
self._microstep_function = None
[docs]
def on_step_begin(
self,
args: Union[transformers.TrainingArguments, TrainingParams],
state: Optional[transformers.TrainerState] = None,
control: Optional[transformers.TrainerControl] = None,
**kwargs,
):
"""Event called at the beginning of a training step.
If using gradient accumulation, one training step might take several inputs.
"""
self._complete_previous_microstep_if_needed()
self._start_microstep()
[docs]
def on_substep_end(
self,
args: Union[transformers.TrainingArguments, TrainingParams],
state: Optional[transformers.TrainerState] = None,
control: Optional[transformers.TrainerControl] = None,
**kwargs,
):
"""Event called at the end of an substep during gradient accumulation."""
self._complete_previous_microstep_if_needed()
self._start_microstep()
[docs]
def on_step_end(
self,
args: Union[transformers.TrainingArguments, TrainingParams],
state: Optional[transformers.TrainerState] = None,
control: Optional[transformers.TrainerControl] = None,
**kwargs,
):
"""Event called at the end of each train step.
Note that this will be called after all gradient accumulation substeps.
"""
self._complete_previous_microstep_if_needed()
self._profiler.step()
def _complete_previous_microstep_if_needed(self):
if self._microstep_function is None:
return
self._microstep_function.__exit__(*sys.exc_info())
self._microstep_function = None
def _start_microstep(self):
self._microstep_function = torch.profiler.record_function("microstep")
self._microstep_function.__enter__()