Source code for oumi.core.datasets.base_iterable_dataset
# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from collections.abc import Iterable
from typing import Any, Optional
import datasets
from torch.utils.data import IterDataPipe
from oumi.utils.logging import logger
[docs]
class BaseIterableDataset(IterDataPipe, abc.ABC):
"""Abstract base class for iterable datasets."""
dataset_name: str
dataset_path: Optional[str] = None
default_dataset: Optional[str] = None
default_subset: Optional[str] = None
trust_remote_code: bool = False
def __init__(
self,
*,
dataset_name: Optional[str] = None,
dataset_path: Optional[str] = None,
subset: Optional[str] = None,
split: Optional[str] = None,
trust_remote_code: bool = False,
stream: bool = True,
**kwargs,
) -> None:
"""Initializes a new instance of the BaseIterableDataset class."""
dataset_type_name = self.__class__.__name__
logger.info(f"Creating iterable dataset (type: {dataset_type_name})...")
if len(kwargs) > 0:
logger.debug(
f"Unknown arguments: {', '.join(kwargs.keys())}. "
"Please check the class constructor for supported arguments "
f"(type: {dataset_type_name})."
)
dataset_name = dataset_name or self.default_dataset
if dataset_name is None:
raise ValueError(
"Please specify a dataset_name or "
"set the default_dataset class attribute "
f"(type: {dataset_type_name})."
)
self.dataset_name = dataset_name
self.dataset_path = dataset_path
self.dataset_subset = subset or self.default_subset
self.split = split
self.trust_remote_code = trust_remote_code
self.stream = stream
self._data = self._load_data()
#
# Main API
#
[docs]
def __iter__(self):
"""Iterates over the dataset."""
for item in self.data:
yield self.transform(item)
[docs]
def iter_raw(self):
"""Iterates over the raw dataset."""
yield from self.data
[docs]
def to_hf(self, return_iterable: bool = True) -> datasets.IterableDataset:
"""Converts the dataset to a Hugging Face dataset."""
if not return_iterable:
raise NotImplementedError("Only returning IterableDataset is supported.")
return datasets.IterableDataset.from_generator(self.__iter__)
@property
def data(self) -> Iterable[Any]:
"""Returns the underlying dataset data."""
return self._data
#
# Abstract Methods
#
def _load_data(self) -> Iterable[Any]:
"""Loads the dataset from the specified source."""
if self.dataset_path:
result = self._load_local_dataset(self.dataset_path)
else:
result = self._load_hf_hub_dataset()
return result
def _load_hf_hub_dataset(self) -> Iterable[Any]:
"""Loads the dataset from the specified source."""
return datasets.load_dataset(
path=self.dataset_name,
name=self.dataset_subset,
split=self.split,
streaming=self.stream,
trust_remote_code=self.trust_remote_code,
)
def _load_dataset_from_disk(self, path: str) -> Iterable[Any]:
return datasets.Dataset.load_from_disk(path)