Source code for oumi.datasets.evaluation.alpaca

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Porting the Alpaca evaluation dataset to Oumi.

For more info see: https://github.com/tatsu-lab/alpaca_eval
"""

from typing import Union, cast

import pandas as pd

from oumi.core.datasets import BaseSftDataset
from oumi.core.registry import register_dataset
from oumi.core.types.conversation import Conversation, Message, Role


[docs] @register_dataset("tatsu-lab/alpaca_eval") class AlpacaEvalDataset(BaseSftDataset): system_prompt_with_context = ( "Below is an instruction that describes a task, " "paired with an input that provides further context. " "Write a response that appropriately completes the request." ) system_prompt_without_context = ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request." ) default_dataset = "tatsu-lab/alpaca_eval" def __init__( self, *, include_system_prompt: bool = False, unused_entries_to_metadata: bool = False, trust_remote_code: bool = True, **kwargs, ) -> None: """Initializes a new instance of the AlpacaEvalDataset class. Args: include_system_prompt: Whether to include a system prompt in the conversation. unused_entries_to_metadata (bool): Whether to save entries that were not used in the conversation (entries other than `instruction`, `input`) as metadata. trust_remote_code: Whether to trust remote code. **kwargs: Additional keyword arguments. """ self.include_system_prompt = include_system_prompt self.unused_entries_to_metadata = unused_entries_to_metadata super().__init__(**kwargs, trust_remote_code=trust_remote_code)
[docs] def transform_conversation(self, example: Union[dict, pd.Series]) -> Conversation: """Preprocesses the inputs of the example and returns a dictionary. Args: example (dict or Pandas Series): An example containing `input` (optional), `instruction` entries. Returns: dict: The input example converted to Alpaca dictionary format. Note: If `unused_entries_to_metadata` is set: all example's entries, other than the expected ones (i.e., `input` and `instruction`), are saved as metadata. """ messages = [] # Use default Alpaca user prompt template. if ("input" in example) and len(example["input"]) > 0: # This example has both an instruction and a user input. user_prompt = f"{example['instruction']}\n\n### Input:\n{example['input']}" system_prompt = self.system_prompt_with_context else: user_prompt = cast(str, example["instruction"]) system_prompt = self.system_prompt_without_context # Create message list. if self.include_system_prompt: messages.append(Message(role=Role.SYSTEM, content=system_prompt)) messages.append(Message(role=Role.USER, content=user_prompt)) # Retain entries (other than `instruction`, `input`) as metadata. metadata_fields = set() if self.unused_entries_to_metadata: if isinstance(example, pd.Series): metadata_fields = {str(i) for i in example.index} elif isinstance(example, dict): metadata_fields = {str(key) for key in example.keys()} metadata_fields = metadata_fields - {"instruction", "input"} metadata = {field: example[field] for field in metadata_fields} return Conversation(messages=messages, metadata=metadata)