Source code for oumi.datasets.grpo.letter_count

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pandas as pd
from typing_extensions import override

from oumi.core.datasets.base_grpo_dataset import BaseExperimentalGrpoDataset
from oumi.core.registry import register_dataset
from oumi.core.types.conversation import Conversation

_SYSTEM_PROMPT = (
    "Your final answer should be an integer written as digits and formatted as "
    r'"\boxed{your_answer}". For example, if the answer is 42, '
    r'you should output "\boxed{42}".'
)


[docs] @register_dataset("oumi-ai/oumi-letter-count") class LetterCountGrpoDataset(BaseExperimentalGrpoDataset): """Dataset class for the `oumi-ai/oumi-letter-count` dataset. A sample from the dataset: { "conversation_id": "oumi_letter_count_0", "messages": [ { "content": "Can you let me know how many 'r's are in 'pandered'?", "role": "user", } ], "metadata": { "letter": "r", "letter_count_integer": 1, "letter_count_string": "one", "unformatted_prompt": "Can you let me know how many {letter}s are in {word}?", "word": "pandered", }, } """ # noqa: E501 default_dataset = "oumi-ai/oumi-letter-count"
[docs] @override def transform(self, sample: pd.Series) -> dict: """Validate and transform the sample into Python `dict`.""" # Add system prompt before user prompt. system_message = {"content": _SYSTEM_PROMPT, "role": "system"} messages = [system_message, sample["messages"][0]] return { "prompt": messages, "letter_count": sample["metadata"]["letter_count_integer"], }
[docs] @override def transform_conversation(self, sample: pd.Series) -> Conversation: """Converts the input sample to a Conversation. Args: sample (dict): The input example. Returns: Conversation: The resulting conversation. """ # Example is already in conversation format and only needs light processing. sample_dict = sample.to_dict() # Add system prompt before user prompt. system_message = {"content": _SYSTEM_PROMPT, "role": "system"} messages = [system_message, sample["messages"][0]] sample_dict["messages"] = messages return Conversation.from_dict(sample_dict)