Source code for oumi.datasets.grpo.rewards.completion_length_rewards

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import re

from oumi.core.registry import RegistryType, register


def _whitespace_tokenize(s: str) -> list[str]:
    return re.split(r"\s+", s)


[docs] def compute_soft_target_token_length_reward(num_tokens: int, *, target_tokens: int): """Returns maximum reward for inputs that are `target_tokens` long. The reward is in the [0,1] range and reduces smoothly from the maximum value of 1.0 if the actual number of tokens deviates from `target_tokens`. The reward is proportional to: `x*exp(-x)` where `x := num_tokens/target_tokens`. """ x = num_tokens / target_tokens return x * math.exp(-x) * math.e
def _compute_completion_soft_target_token_length_reward( completions, *, target_tokens: int ): return [ compute_soft_target_token_length_reward( len(_whitespace_tokenize(content)), target_tokens=target_tokens ) for content in completions ]
[docs] def compute_sharp_target_token_length_reward(num_tokens: int, *, target_tokens: int): """Returns maximum reward for inputs that are `target_tokens` long. The reward reduces sharply if the actual number of tokens deviates from `target_tokens`. The reward is computed as: `-|num_tokens - target_tokens|`, which penalizes token counts not equal to `target_tokens`. """ return -abs(num_tokens - target_tokens)
def _compute_completion_sharp_target_token_length_reward( completions, *, target_tokens: int ): return [ compute_sharp_target_token_length_reward( len(_whitespace_tokenize(content)), target_tokens=target_tokens ) for content in completions ] # Simple toy length-based reward functions for experimentation and demonstration # purposes. In practice, most users are expected to define and use custom reward # functions, not these. @register("soft_5tokens_completions", RegistryType.REWARD_FUNCTION) def _soft_5tokens_completions(completions, **kwargs): return _compute_completion_soft_target_token_length_reward( completions, target_tokens=5 ) @register("soft_10tokens_completions", RegistryType.REWARD_FUNCTION) def _soft_10tokens_completions(completions, **kwargs): return _compute_completion_soft_target_token_length_reward( completions, target_tokens=10 ) @register("soft_20tokens_completions", RegistryType.REWARD_FUNCTION) def _soft_20tokens_completions(completions, **kwargs): return _compute_completion_soft_target_token_length_reward( completions, target_tokens=20 ) @register("sharp_5tokens_completions", RegistryType.REWARD_FUNCTION) def _sharp_5tokens_completions(completions, **kwargs): return _compute_completion_sharp_target_token_length_reward( completions, target_tokens=5 ) @register("sharp_10tokens_completions", RegistryType.REWARD_FUNCTION) def _sharp_10tokens_completions(completions, **kwargs): return _compute_completion_sharp_target_token_length_reward( completions, target_tokens=10 ) @register("sharp_20tokens_completions", RegistryType.REWARD_FUNCTION) def _sharp_20tokens_completions(completions, **kwargs): return _compute_completion_sharp_target_token_length_reward( completions, target_tokens=20 )