Source code for oumi.datasets.sft.alpaca

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Porting the Alpaca dataset with Oumi.

For more info see:
    (1) https://github.com/tatsu-lab/stanford_alpaca
    (2) https://github.com/gururise/AlpacaDataCleaned
"""

from typing import Union, cast

import pandas as pd

from oumi.core.datasets import BaseSftDataset
from oumi.core.registry import register_dataset
from oumi.core.types.conversation import Conversation, Message, Role


[docs] @register_dataset("yahma/alpaca-cleaned") @register_dataset("tatsu-lab/alpaca") class AlpacaDataset(BaseSftDataset): system_prompt_with_context = ( "Below is an instruction that describes a task, " "paired with an input that provides further context. " "Write a response that appropriately completes the request." ) system_prompt_without_context = ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request." ) default_dataset = "tatsu-lab/alpaca" def __init__( self, *, include_system_prompt: bool = True, **kwargs, ) -> None: """Initializes a new instance of the AlpacaDataset class.""" self.include_system_prompt = include_system_prompt super().__init__(**kwargs)
[docs] def transform_conversation(self, example: Union[dict, pd.Series]) -> Conversation: """Preprocesses the inputs of the example and returns a dictionary. Args: example (dict or Pandas Series): An example containing `input` (optional), `instruction`, and `output` entries. Returns: dict: The input example converted to Alpaca dictionary format. """ messages = [] # Use default Alpaca user prompt template if ("input" in example) and len(example["input"]) > 0: # This example has both an instruction and a user input. user_prompt = f"{example['instruction']}\n\n### Input:\n{example['input']}" system_prompt = self.system_prompt_with_context else: user_prompt = cast(str, example["instruction"]) system_prompt = self.system_prompt_without_context model_output = cast(str, example["output"]) # Create message list if self.include_system_prompt: messages.append(Message(role=Role.SYSTEM, content=system_prompt)) messages.append(Message(role=Role.USER, content=user_prompt)) messages.append(Message(role=Role.ASSISTANT, content=model_output)) return Conversation(messages=messages)