Source code for oumi.datasets.sft.magpie

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Union

import pandas as pd

from oumi.core.datasets import BaseSftDataset
from oumi.core.registry import register_dataset
from oumi.core.types.conversation import Conversation, Message, Role


[docs] @register_dataset("argilla/magpie-ultra-v0.1") class ArgillaMagpieUltraDataset(BaseSftDataset): """Dataset class for the argilla/magpie-ultra-v0.1 dataset.""" default_dataset = "argilla/magpie-ultra-v0.1"
[docs] def transform_conversation(self, example: Union[dict, pd.Series]) -> Conversation: """Transform a dataset example into a Conversation object.""" instruction: str = example.get("instruction", None) or "" response: str = example.get("response", None) or "" messages = [ Message(role=Role.USER, content=instruction), Message(role=Role.ASSISTANT, content=response), ] return Conversation(messages=messages)
[docs] @register_dataset("Magpie-Align/Llama-3-Magpie-Pro-1M-v0.1") @register_dataset("Magpie-Align/Magpie-Pro-300K-Filtered") class MagpieProDataset(BaseSftDataset): """Dataset class for the Magpie-Align/Llama-3-Magpie-Pro-1M-v0.1 dataset.""" default_dataset = "Magpie-Align/Llama-3-Magpie-Pro-1M-v0.1"
[docs] def transform_conversation(self, example: Union[dict, pd.Series]) -> Conversation: """Transform a dataset example into a Conversation object.""" conversation = example.get("conversations") if conversation is None: raise ValueError("Conversation is None") messages = [] for message in conversation: if message["from"] == "human": role = Role.USER elif message["from"] == "gpt": role = Role.ASSISTANT else: raise ValueError(f"Unknown role: {message['from']}") content = message.get("value", "") messages.append(Message(role=role, content=content)) return Conversation(messages=messages)