Source code for oumi.datasets.sft.prompt_response

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Generic class for using HuggingFace datasets with input/output columns.

Allows users to specify the prompt and response columns at the config level.
"""

import pandas as pd

from oumi.core.datasets import BaseSftDataset
from oumi.core.registry import register_dataset
from oumi.core.types.conversation import Conversation, Message, Role


[docs] @register_dataset("PromptResponseDataset") class PromptResponseDataset(BaseSftDataset): """Converts HuggingFace Datasets with input/output columns to Message format. Example: dataset = PromptResponseDataset(hf_dataset_path="O1-OPEN/OpenO1-SFT", prompt_column="instruction", response_column="output") """ default_dataset = "O1-OPEN/OpenO1-SFT" def __init__( self, *, hf_dataset_path: str = "O1-OPEN/OpenO1-SFT", prompt_column: str = "instruction", response_column: str = "output", **kwargs, ) -> None: """Initializes a new instance of the PromptResponseDataset class.""" self.prompt_column = prompt_column self.response_column = response_column kwargs["dataset_name"] = hf_dataset_path super().__init__(**kwargs)
[docs] def transform_conversation(self, example: dict | pd.Series) -> Conversation: """Preprocesses the inputs of the example and returns a dictionary. Args: example (dict or Pandas Series): An example containing `input` (optional), `instruction`, and `output` entries. Returns: dict: The input example converted to messages dictionary format. """ messages = [] user_prompt = str(example[self.prompt_column]) messages.append(Message(role=Role.USER, content=user_prompt)) if self.response_column: model_output = str(example[self.response_column]) messages.append(Message(role=Role.ASSISTANT, content=model_output)) return Conversation(messages=messages)