Source code for oumi.judges.oumi_judge

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Optional

from typing_extensions import override

from oumi.core.types.conversation import Conversation, Message, Role, TemplatedMessage
from oumi.judges.base_judge import BaseJudge, BaseJudgeOutput
from oumi.utils.str_utils import str_to_bool


[docs] class OumiJudgeInput(TemplatedMessage): role: Role = Role.USER template: str = """<request>{{ request }}</request> {% if context %}<context>{{ context }}</context>{% endif %} {% if response %}<response>{{ response }}</response>{% endif %} """ request: str response: Optional[str] = None context: Optional[str] = None
[docs] class OumiJudgeOutput(BaseJudgeOutput): role: Role = Role.ASSISTANT template: str = ( "<explanation>{{explanation}}</explanation><judgement>{{judgement}}</judgement>" ) judgement: Optional[str] = None explanation: Optional[str] = None @property @override def label(self): """Convert the judgement to a boolean or Likert scale label.""" if self.judgement: if self.judgement.isdigit(): return int(self.judgement) try: return str_to_bool(self.judgement) except ValueError: return None return None
[docs] class OumiXmlJudge(BaseJudge): def _transform_conversation_input( self, conversation: Conversation ) -> OumiJudgeInput: user_prompt: Optional[Message] = conversation.last_message(Role.USER) assistant_prompt: Optional[Message] = conversation.last_message(Role.ASSISTANT) if user_prompt is not None: if not user_prompt.contains_text_content_items_only(): raise ValueError("User message contains non-text content!") request: str = user_prompt.compute_flattened_text_content() else: raise ValueError("No user prompt found in conversation") response: Optional[str] = None if assistant_prompt is not None: if not assistant_prompt.contains_text_content_items_only(): raise ValueError("Assistant message contains non-text content!") response = assistant_prompt.compute_flattened_text_content() else: response = None return OumiJudgeInput(request=request, response=response) def _transform_dict_input(self, raw_input: dict[str, Any]) -> OumiJudgeInput: return OumiJudgeInput(**raw_input) def _transform_model_output(self, model_output) -> Optional[OumiJudgeOutput]: return OumiJudgeOutput.from_xml_output(model_output)