Source code for oumi.core.datasets.base_rubric_dataset

# Copyright 2025 - Oumi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Base class for rubric-based datasets."""

from abc import abstractmethod
from typing import Any, TypedDict

import pandas as pd

from oumi.core.datasets.base_map_dataset import BaseMapDataset


class Rubric(TypedDict):
    """A single rubric criterion for evaluating responses."""

    name: str
    """Short identifier for the criterion (e.g., 'Correct Diagnosis')."""

    description: str
    """Detailed description of what the criterion evaluates."""

    weight: float
    """Importance weight. Positive for desired criteria, negative for pitfalls."""


[docs] class BaseRubricDataset(BaseMapDataset): """Base class for rubric-based datasets. This provides common functionality for datasets used with rubric-based reward functions in GRPO training. Subclasses should implement the `transform` method to return the expected format. Expected transform() output format: { "prompt": str, # The user prompt/question "rubrics": list[Rubric], # List of evaluation criteria "system_prompt": str | None, # Optional system prompt "metadata": dict | None, # Optional dataset-specific metadata } """ def __init__( self, *, dataset_name: str | None = None, dataset_path: str | None = None, split: str | None = None, **kwargs, ) -> None: """Initializes the BaseRubricDataset.""" super().__init__( dataset_name=dataset_name, dataset_path=dataset_path, split=split, **kwargs, ) self._data = self._load_data()
[docs] @abstractmethod def transform(self, sample: pd.Series) -> dict[str, Any]: """Transform a raw sample into the standard rubric format. Subclasses must override this method to return: { "prompt": str, "rubrics": list[Rubric], "system_prompt": str | None, # optional "metadata": dict | None, # optional } """